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Abstract
We study the creation of charged scalar massive particles in a three-dimensional
cavity with a moving wall. Using the Schrödinger picture, we calculate the
average number of produced pairs, and the Casimir energy. We also discuss
the divergent terms that appear in our calculations. Finally, we present a model
that includes the back reaction of the field, and that may be used to remove the
divergent terms.

PACS numbers: 42.50.Lc, 03.70.+k, 11.10.Ef

1. Introduction

The creation of photons in a cavity with moving boundaries has been studied in many papers.
In some of them (see [8, 11, 15, 16, 18]), the authors study cavities whose walls oscillate in
resonance with the eigenfrequencies of some electromagnetic modes. In this specific case, the
authors calculate, using a non-perturbative way (multiple scale analysis [15], rotating wave
approximation [5, 16]) the average number of produced photons in every mode. In other
papers (see [1–3, 5, 12]), the authors study the creation of massless particles in cavities with
walls moving in a more general prescribed trajectory. In this case, due to the difficulty of the
problem, the number of produced pairs is only computed until the first or second perturbative
order.

In this work, we also study this second case, but from another point of view. We consider
a rectangular cavity with a moving wall, and we assume that the velocity of the wall is of order
ε. Then following [9], we make a change of coordinates that transform the moving wall into
a stationary one. Then, using these coordinates we can quantize any field in the usual way.
Here, to simplify, we consider a charged massive scalar field, although the method is also valid
for the Dirac or the electromagnetic field. Once we have quantized the field, we calculate
the time-evolved vacuum state in the same way as [12], and then we obtain, until order ε2,
the average number of produced pairs and the Casimir energy. In the obtained formulae, there
appear some divergent terms when the movement of the wall is not smooth enough [1]. We
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believe that these divergent quantities can be removed taking into account the back reaction.
For this reason, using the new coordinates, we easily construct the Lagrangian of the system
that includes the back reaction (this Lagrangian coincides with that obtained in [6] following
another approach), and finally we present a simplified model that may be used to remove the
divergent terms.

2. The (1+1)-dimensional case

2.1. The problem

In this section, we consider a one-dimensional cavity, with a stationary boundary located at
the origin, and the other moving in a prescribed trajectory, denoted by lε(t) = L + εf (t).

We assume that ε is a dimensionless small parameter, and we also suppose that the
function f has the following form,

f (t) =



0 when t < 0
f (t) when 0 � t � T

L̄ when t > T ,

(1)

that is, the movement of the boundary starts at time 0 and finishes at time T.
The Lagrangian density of the charged massive scalar field is

L(t, x) = h̄2|φt |2 − c2h̄2|φx |2 − m2c4|φ|2, (2)

where we must impose Dirichlet boundary conditions, i.e., we impose that φ satisfies
φ(t, 0) = φ(t, lε(t)) = 0, ∀t ∈ R.

To transform the moving boundary into a fixed one, we make the following not conformal
change of coordinates (see [9]):

R : (s, u) → (t (s, u), x(s, u)) = (s, ulε(s)). (3)

Now, the boundaries are situated at the points u = 0 and u = 1, and the Lagrangian
density of the system behaves as L̃(s, u) := L(R(s, u))lε(s).

If we write φ̃(s, u) := φ(R(s, u)), we can get the Lagrangian density as a function of the
new coordinates

L̃ = lε

[
h̄2

∣∣∣∣φ̃s − l′ε
lε

uφ̃u

∣∣∣∣
2

− c2h̄2

l2
ε

|φ̃u|2 − m2c4|φ̃|2
]

, (4)

with boundary condition φ̃(s, 0) = φ̃(s, 1) = 0.
The Hamiltonian density is

H̃ = 1

lε

[ |ξ̃ |2
h̄2 + c2h̄2|φ̃u|2 + l2

ε m
2c4|φ̃|2

]
+

l′ε
lε

u(φ̃∗
uξ̃ + ξ̃ ∗φ̃u), (5)

where we have used the canonical conjugated momentum

ξ̃ := ∂L̃
∂φ̃∗

s

= lεh̄
2

(
φ̃s − l′ε

lε
uφ̃u

)
. (6)

2.2. Decomposition in oscillators

To obtain the decomposition in harmonic oscillators of the Hamiltonian, we start with the
Fourier series of the dynamical variables φ̃ and ξ̃ :

φ̃(s, u) =
∞∑

n=1

An(s)
√

2 sin(nπu), ξ̃ (s, u) =
∞∑

n=1

Bn(s)
√

2 sin(nπu).
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It is easy to check that the Hamiltonian has the form

H̃ = 1

lε

∞∑
n=1

[ |Bn|2
h̄2 +

(
c2h̄2π2n2 + l2

ε m
2c4

)|An|2
]

− l′ε
2lε

∞∑
n=1

(BnA
∗
n + B∗

nAn)

− l′ε
lε

∞∑
r,k=1
r �=k

2kr

r2 − k2
(−1)r+k(BrA

∗
k + B∗

r Ak), (7)

where, now the dynamical variables are An, . . . , B
∗
n , with n ∈ N.

If we want to obtain the decomposition in harmonic oscillators of the Hamiltonian for
times smaller than zero, we must make the canonical change

An = 1

h̄
√

2L
(Qn + iQ̄n), Bn = h̄

√
L

2
(Pn + iP̄ n),

where Qn and Q̄n are two independent real variables and, Pn and P̄ n are their canonically
conjugated momenta.

Then, ∀s � 0 we have

H̃ (s) = 1

2

∞∑
n=1

(
P 2

n + ω2
n(0)Q2

n

)
+

(
P̄ 2

n + ω2
n(0)Q̄2

n

)
, (8)

where the frequencies of the oscillators are given by ωn(0) ≡ 1
h̄

√
c2h̄2π2n2

L2 + m2c4.

To obtain this decomposition for times greater than T, we must make this other canonical
change

An = 1

h̄
√

2(L + εL̄)
(qn + iq̄n), Bn = h̄

√
L + εL̄

2
(pn + ip̄n),

and then, ∀s � T we have

H̃ (s) = 1

2

∞∑
n=1

(
p2

n + ω2
n(T )q2

n

)
+

(
p̄2

n + ω2
n(T )q̄2

n

)
, (9)

where now the frequencies are given by ωn(T ) ≡ 1
h̄

√
c2h̄2π2n2

(L+εL̄)2 + m2c4.

When the boundary moves, that is, for s ∈ (0, T ), the Hamiltonian has a very complicated
form. Here, using the dynamical variables Qn, . . . , P̄ n we can get the following expression,

H̃ (s) = L

2lε

∞∑
n=1

(
P 2

n + λ2
n(ε; s)Q2

n

)
+

(
P̄ 2

n + λ2
n(ε; s)Q̄2

n

) − l′ε
2lε

∞∑
n=1

(QnPn + Q̄nP̄ n)

− l′ε
lε

∞∑
r,k=1
r �=k

2kr

r2 − k2
(−1)r+k(QkPr + Q̄kP̄ r ); (10)

where

λn(ε; s) = 1

h̄

√
c2h̄2π2n2

L2
+

l2
ε

L2
m2c4.
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2.3. Quantum theory

The quantum theory, in the Schrödinger picture, is obtained imposing the standard
commutation rules:

[P̂ r , Q̂l] = [ ˆ̄P r,
ˆ̄Ql] = −ih̄δr,l , [P̂ r ,

ˆ̄Ql] = [ ˆ̄P r, Q̂l] = [P̂ r ,
ˆ̄P l] = [Q̂r ,

ˆ̄Ql] = 0.

Remark 2.1. The same rules are valid for q̂k, . . . , ˆ̄pk .

Now, using these operators we can define, in the Schrödinger picture, the creation and the
annihilation operators [17].

For s � 0, the particle and antiparticle annihilation operators are, respectively,

ân = (iP̂ n + ωn(0)Q̂n) + i(i ˆ̄P n + ωn(0) ˆ̄Qn)

2
√

h̄ωn(0)
, b̂n = (iP̂ n + ωn(0)Q̂n) − i(i ˆ̄P n + ωn(0) ˆ̄Qn)

2
√

h̄ωn(0)
.

For s � T , the particle and antiparticle annihilation operators are, respectively,

ĉn = (ip̂n + ωn(T )q̂n) + i(i ˆ̄pn + ωn(T ) ˆ̄qn)

2
√

h̄ωn(T )
, d̂n = (ip̂n + ωn(T )q̂n) − i(i ˆ̄pn + ωn(T ) ˆ̄qn)

2
√

h̄ωn(T )
.

From the definition of these operators, we can easily deduce the relation between the operators
at time T and the operators at time 0:

ĉn = ân +
εL̄

2L

m2c4

h̄2ω2
n(0)

b̂†
n + O(ε2), d̂†

n = b̂†
n +

εL̄

2L

m2c4

h̄2ω2
n(0)

ân + O(ε2). (11)

Using the creation and annihilation operators, we easily check that

ˆ̃H(s) =
∞∑

n=1

h̄ωn(0)
(
â†

nân + b̂†
nb̂n + 1

) ∀s � 0.

ˆ̃H(s) =
∞∑

n=1

h̄ωn(T )
(
ĉ†nĉn + d̂†

nd̂n + 1
) ∀s � T .

When the boundary moves, the Hamiltonian is what appears in equation (10). Then to
find a self-adjoint quantum Hamiltonian, we must use the symmetrization rule

QnPn + Q̄nP̄ n −→ 1
2 (Q̂nP̂ n + P̂ nQ̂n + ˆ̄Qn

ˆ̄P n + ˆ̄P n
ˆ̄Qn).

In this case, if we use the operators at time 0, the Hamiltonian has a very complicated
form (see, for details, [3, 5]).

2.4. The average number of produced pairs

Let T s be the quantum evolution operator of the Schrödinger equation, and let T s
0 be the ‘free

evolution operator’, that is, the evolution operator of the equation

ih̄
∂

∂s
|ψ〉 = ˆ̃H(0)|ψ〉. (12)

The well-known relation between these two operators is

T s = T s
0 − i

h̄

∫ s

0
T s−τ

0 V̂ (τ )T τ dτ, (13)

where V̂ (τ ) is the part of the quantum Hamiltonian that depends on the parameter ε.
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Then, if we apply the Picard method to relation (13), we can obtain the second-order
approximation of the Schrödinger evolution operator (see [12])

T s ∼ T s
0 − i

h̄

∫ s

0
T s−τ

0 V̂ (τ )T τ
0 dτ − 1

h̄2

∫ s

0

∫ τ

0
T s−τ

0 V̂ (τ )T τ−µ

0 V̂ (µ)T µ

0 dµ dτ. (14)

Now, let |0〉 be the initial vacuum state. Then, applying the evolution operator to this
state, we can conclude that the average number of produced pairs is

Nm :=
∞∑

n=1

〈0|(T T )†ĉ†nĉnT T |0〉

= ε2

L2

(cπ

L

)4 ∞∑
k,n=1

k2n2
∣∣∫ T

0 f ′(τ ) ei(ωn(0)+ωk(0))τ dτ
∣∣2

ωn(0)ωk(0)(ωn(0) + ωk(0))2
+ O(ε4), (15)

where m denotes the mass of the field.

Remark 2.2. From this formula, if we integrate by parts, we can easily deduce that, when the
velocity of the boundary is discontinuous, the average of produced pairs is infinite. And when
the velocity is continuous, this number is finite.

For massless particles, it is not difficult to check the formula

N0 =
∞∑

n=1

〈0|(T T )†ĉ†nĉnT T |0〉 = ε2

6L2

∞∑
n=1

(
n − 1

n

) ∣∣∣∣
∫ T

0
f ′(τ ) ei cπ

L
τn dτ

∣∣∣∣
2

+ O(ε4). (16)

If f has the form f (t) = lg(ν1t, . . . , νN t), where g is a dimensionless function, l is a
distance and ν1, . . . , νN are frequencies. Then, from the formula (16), if we suppose that f ′′

has a discontinuity at t0 ∈ [0, T ], and assuming that Lνk

c
 1 for k = 1, . . . , N , we obtain the

same result as Moore’s (see [1]),

N0 ≈ ε2L2

6(cπ)4

(
f ′′(t+

0

) − f ′′(t−0 ))2
(ζR(3) − ζR(5)). (17)

Remark 2.3. If we consider the trajectory lε(t) = L
(
1 + ε sin

(
2cπ
L

t
))

, and we take TN = 2L
c

N

with N ∈ N. Using the formula (16), we obtain exactly

N0 = ε2

4

(cπ

L
TN

)2
+ O(ε4).

This expression coincides with the result of [8, 11].

3. The (3+1)-dimensional case

3.1. The average number of produced pairs

Here, we consider a rectangular cavity with a moving wall, that is, a volume of the form

[0, lε(t)] × [0, l2] × [0, l3].

To obtain the number of created pairs in the (3+1)-dimensional case, we make the substitution
m2c4 → h̄2c2π2

l2
2

i2 + h̄2c2π2

l2
3

j 2 + m2c4 in the formula (15), and we take the sum over i and j .

Then, if we suppose that l2, l3 � L, until order ε2, we have

Nm(L) ≈ ε2

4L2

l2l3

(cπh̄)2

(cπ

L

)4 ∞∑
k,n=1

∫
R

2

k2n2
∣∣∫ T

0 f ′(τ ) ei(A(k)+A(n))τ dτ
∣∣2

A(k)A(n)(A(k) + A(n))2
dy dz, (18)

where A(n) ≡ 1
h̄

√(
cπh̄n

L

)2
+ y2 + z2 + m2c4.
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Note that, in the 3+1 case, if we integrate by parts the formula (18), we can see that, when
the velocity of the wall is continuous and the acceleration is discontinuous, the number of
produced pairs is infinite. We can also see that when f ′′ is continuous the average number of
created pairs is finite.

3.2. The Casimir energy

Here, we calculate the Casimir energy when the movement of the wall is finished, i.e., when
s > T .

In this situation, if we assume that l2, l3 � L, the energy of the system is

Em(L; T ) = 〈0|(T T )† ˆ̃H(T )T T |0〉

= ε2

4L2

l2l3

(cπh̄)2

(cπ

L

)4 ∞∑
k,n=1

∫
R

2

k2n2
∣∣∫ T

0 f ′(τ ) ei(A(k)+A(n))τ dτ
∣∣2

A(k)A(n)(A(k) + A(n))
dy dz

+ Terms until order ε2 of

(
1

4

l1l2h̄

(cπh̄)2

∞∑
n=1

∫
R

2
A(n; T ) dy dz

)
+ O(ε4), (19)

where A(n; T ) ≡ 1
h̄

√(
cπh̄n

L+εL̄

)2
+ y2 + z2 + m2c4.

Note that, the energy is decomposed in two different parts. The first, which we call the
dynamical part, is the energy of the produced pairs, and the other, which we call the static
part, is the usual Casimir energy that appears is the stationary case.

It is clear that the static part is divergent. Then, to renormalize this part we subtract the
energy of the Minkowskian vacuum inside the box, namely EMin

m (L) [14]. Then, the new
energy of the system is

Em(L) ≡ Em(L) − EMin
m (L). (20)

Now, this new energy is infinite in the case when the acceleration of the wall is
discontinuous. But, from the Abel–Plana formula [10] we can deduce that the divergent
part of Em(L) does not depend on the length L, and consequently the Casimir force

Fm(L) ≡ − d

dL
Em(L), (21)

is a finite quantity.

3.3. The back reaction

Here we also consider a rectangular cavity with a moving wall. Let l(s) = lε(s) + g(s) be the
trajectory of the boundary, where lε is the prescribed trajectory of the wall, that is, lε is the
solution of the Newton equation Mẍ = Fext where Fext is the prescribed external force, and
g describes the correction of the movement produced by the emission of pairs. Then, the full
Lagrangian of the system is

L̃ =
∫ l3

0

∫ l2

0

∫ 1

0
l

[
h̄2

∣∣∣∣φ̃s − l′

l
uφ̃u

∣∣∣∣
2

− c2h̄2

l2
|φ̃u|2

− c2h̄2(|φ̃y |2 + |φ̃z|2)− m2c4|φ̃|2
]

du dy dz +
1

2
M(l′(s))2 − W(l(s), s). (22)

The first term is the Lagrangian of the field in terms of the coordinates (s, u, y, z)

introduced in section 1.1, and the other terms are the kinetic and potential energy of the
moving boundary.



Pair production in a cavity with moving boundaries 6439

The full Hamiltonian analogous to that obtained in [6] is

H̃ full = 1

l

∫ l3

0

∫ l2

0

∫ 1

0

[ |ξ̃ |2
h̄2 + c2h̄2|φ̃u|2 + c2h̄2l2(|φ̃y |2 + |φ̃z|2) + l2m2c4|φ̃|2

]
du dy dz

+
l′ε
l

∫ l3

0

∫ l2

0

∫ 1

0
u(φ̃∗

uξ̃ + ξ̃ ∗φ̃u) du dy dz +
1

2
M((g′)2 − (l′ε)

2) + W(l(s), s).

(23)

To obtain the quantum theory, we must quantize the dynamical variables φ̃, ξ̃ , g and
p ≡ ∂L̃

∂g′ [6, 7]. But, we believe that to simplify the calculation of the average number of
produced pairs and the Casimir energy (taking into account the back reaction), it is easier to
use the following approximated model.

From the Euler–Lagrange equations, we obtain the following dynamical equation:

g′′ = F(φ̃, . . . , ξ̃ ∗, g′, g, lε).

Now we only quantize the variables φ̃, . . . , ξ̃ ∗, and we impose the equation

g′′(s) = 〈0|(T s)†F( ˆ̃φ, . . . , ˆ̃ξ ∗, g′, g, lε)T s |0〉 ≡ F(s).

Then, the model that includes the back reaction is{
ih̄∂sT s |0〉 = ˆ̃H full(s)T s |0〉
g′′(s) = F(s).

(24)

3.4. Open questions

(i) In dimension 3, when f ′′ has a discontinuity the average number of produced pairs is
infinite. Why is this number infinite? Is it possible to renormalize this quantity?

(ii) For a rectangular cavity [0, lε(s)] × [0, l2] × [0, l3] an easy but cumbersome calculation
shows that the dynamical part of the energy at time s is given by

ε2h̄

L2

(πc

L

)4 ∑
n,k∈N

3

n2
1k

2
1δn2,k2δn3,k3

ωn(0)ωk(0)(ωn(0) + ωk(0))3

×
[∣∣∣∣

∫ s

0
f ′′(τ ) ei(ωn(0)+ωk(0))τ dτ

∣∣∣∣
2

− (f ′(s))2

]
− ε2

2L2h̄

(πc

L

)2

×
∑
n∈N

3

n2
1A

2
n

ω4
n(0)

f ′(s)
∫ 2

0
f ′(τ ) sin(2ωn(0)(s − τ)) dτ + O(ε4), (25)

where we have introduced

ωn(0) ≡ 1

h̄

√(
πh̄cn1

L

)2

+

(
πh̄cn2

l2

)2

+

(
πh̄cn3

l3

)2

+ m2c4

and

An ≡
√(

πh̄cn2

l2

)2

+

(
πh̄cn3

l3

)2

+ m2c4.

Note that, this dynamical energy has some divergent terms. If we assume that l2, l3 � L,
using the Abel–Plana formula (see (2.29)–(2.33) of [10]), we can conclude that the
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divergent part is

ε2l2l3

(π2c2h̄)2

∫
R

4

x2x̄2 dx dx̄ dy dz

ExyzEx̄yz(Exyz + Ex̄yz)3

[
h̄2(f ′′(s))2

(Exyz + Ex̄yz)2
− (f ′(s))2

]

− ε2h̄

L

l2l3

(πch̄)2

∫
R

3

x2A2
yz dx dy dz

E4
xyz

[
h̄(f ′(s))2

2Exyz

− h̄3f ′(s)f ′′′(s)
8E3

xyz

]
, (26)

where

Exyz ≡
√

x2 + y2 + z2 + m2c4, Ayz ≡
√

y2 + z2 + m2c4.

We write (26) in the following form,

C1(f
′(s))2 + C2(f

′′(s))2 + C3f
′(s)f ′′′(s), (27)

where C1, C2 and C3 are divergent constants.
C1 can be removed by a mass renormalization of the moving wall [4]. To remove the
other divergent constants we can follow a method similar to that used in [7]. We propose
that the potential energy of the moving wall has the form

W(lε(s), s) = Wexp(lε(s), s) − C2(f
′′(s))2 − C3f

′(s)f ′′′(s). (28)

where Wexp is the experimental potential energy of the moving wall. Thus, the full energy
of the system does not contain any divergent quantity.

We believe that (28) can be proved if we take into account the back reaction. In fact,
if we take into account the back reaction, the potential energy of the moving wall has the
form

V + b(f ′′(s))2 + cf ′(s)f ′′′(s), (29)

and perhaps, using the model proposed in equation (24), we can show that

V = Wexp, b = −C2 and c = −C3.

These questions will be discussed in [19].
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